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Opening Message

AI Creates Value in Long-Term Operations

The allure of Artificial Intelligence in industrial applications is

undeniable. Many prototypes offer a vision where data-driven

analytics and optimization bring a competitive advantage: Re-

ducing the resource consumption, improving machine param-

eters, increasing the output quality, detecting anomalies and

predicting failures, and so on.

Yet, amidst the excitement of initial experimentation, it is easy

to overlook the critical imperative: AI-based systems in indus-

try create their value in sustained long-term operations. And

many AI prototypes, however successful, never make it into the

operational phase. From this we conclude that the transition

from a prototype to an industrialized solution is a difficult task

and that the requirements for sustained operations go much

beyond what a prototype can deliver.

Requirements Beyond the Prototype

In the age of agile software development methods, the explicit

definition of requirements may fall to the wayside. However,

the long-term productive use of AI in industry comes with chal-

lenges that only become apparent in the operational phase.

Then it can be already too late to make fundamental changes.

Hence, we advocate to anticipate the requirements for success-

ful operations early on. That way, deliberate decisions can be

made throughout the different phases of development.

Collaboration of AI and Domain Experts

Successful AI projects in industry need a tight collaboration

between AI experts and domain experts. Especially when solu-

tions from both sides get integrated into an overall AI-enabled

system. As part of development, the common vision of the

eventual solution gets increasingly more concrete. But without

a common language (verbal, written or even visual) to express

it, this vision can deviate substantially between stakeholders

without them being aware. Stating high-level requirements

starts the dialogue between AI experts and domain experts,

ensures that misunderstandings can be clarified early on, and

lays the basis for joint development.

.

Improving the Success Rate of AI Initiatives

This document aims to improve the success rate of AI initiatives

in industry. To do so, it provides a framework for the definition

of requirements beyond the prototype. This enables a dialogue

with respect to development goals between technical specialists

from industry and the AI domain, as well as the synchronization

with decision makers and organizational leaders. Beyond this

document, the initiatives of KI-Engineering and AI Innovation

Center develop technical and organizational tools for AI in

industry.

We wish our readers much success on their journey towards

»AI beyond the prototype«.

Constanze Hasterok Marco Huber Thomas Renner
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Requirements Beyond the Prototype

The step from a working prototype to a long-term solution comes with many difficulties and pitfalls.

Especially the requirements change beyond the prototype. We make these differences explicit so the

operational requirements can be better anticipated.

Operations Scenarios for AI in Industry

We distinguish four archetypes of operations scenarios shown

in Figure 1. They are different along the axis of i) the criticality

of operations (does the business or even human health directly

depend on the functionality) and ii) whether development and

operations are handled by the same organization or not.

Prototype A prototype is developed to demonstrate the fea-

sibility of a solution approach. It is typically operated under

close supervision of the original developers. For that, also sub-

stantial changes and improvements can be made to the system

during operations.

Internal Deployment An internal deployment is different

from the proof of concept as the system developers are no

longer part of the daily operations. However, if the deployment

remains within the same organization as the development, then

it remains possible to share data between the development

and operations teams.

Trial Operations Trial observations are non-critical like a

proof of concept. Trials are however performed in an external

environment. The difference is that trial operations are often

limited in time and scope and are done not in order to validate

a method, but to showcase performance before advancing into

the external deployment stage.

External Deployment External deployment is both critical

and operated by an organization that is not the original devel-

oper of the system. Here, the requirements for the technology-

readiness level is the highest. Additional requirements are

for documentation and training, as well as the agency of the

operator to perform small maintenance tasks in-house.

Critical
usage

Non-

critical

Internal use

Internal 
Deployment

External use

External 
Deployment

Proof of
Concept

Trial
Operations

Figure 1: AI Operations Scenarios.

Requirement Categories

We group the requirements for AI beyond the prototype into

six broad categories. The remainder of this document discusses

each category in a dedicated section.

1. Autonomy Level

2. Performance

3. Supervision and Maintenance

4. Integration and Deployment

5. Acceptability

6. Regulation Compliance

The relative importance of the requirement categories is typi-

cally very different between the operations scenarios. Figure 2

shows the result of an internal expert survey for the respective

importance of each requirement category. As an example, the

long-term availability of a solution can be neglected for the

Proof of Concept, wheres an external deployment needs to

cover this requirement so that the operating organization can

rely on a technology that has become critical to its business.

To transfer the prototype into operations, the changes to the

requirements can sometimes be so serious that development

has to be restarted after the Proof of Concept. In other cases

an iterative refinement of a prototype solution can reach a

maturity level high enough for critical operations.

Proof of Concept Internal Deployment

Trial Operations External Deployment

Supervision and
Maintenance

Integration and Deployment

Autonomy
Level

Regulation
Compliance

Acceptability

Performance

Figure 2: Importance of the requirements categories.
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1. Autonomy Level

The autonomy level is a business requirement with a strong impact on all other requirement categories.

For example concerning performance and robustness and the appropriate human-machine interfaces.

And also repetitive steps for Machine Learning itself can be automated.

Autonomy Level of AI in Industry

There exist several definitions for AI autonomy in industry, for

example for Industrie 4.0 [18] and autonomous driving [19].

We aggregate and simplify them into four autonomy levels.

1. Assistance Functionality

A human operator continues to

make all decisions and bears the

full responsibility. The AI functional-

ity assists the operator for decision-

making in challenging situations.

For this the operator needs visibil-

ity into the ongoing operations with appropriate interfaces

to access the assistance functionality and to interact with the

underlying system.

2. Human in the Loop

The AI functionality observes the be-

havior of the system at runtime and

proposes courses of action, that are

approved or overridden by the hu-

man operator. The responsibility still

rests with the human operator. The

regular human feedback (accepting or overriding a proposed

course of action) can be used for the continuous improvement

of the AI functionality.

3. Human Supervision

The AI functionality acts au-

tonomously within defined limits.

Human supervision and intervention

is possible—in some cases the

constant presence of a human

operator can be required. When

the system leaves its defined limits, control is returned to the

human operator or the system switches into a known-safe

operating mode.

4. Full Autonomy

In fully autonomous operations, hu-

man operators have no possibility to

influence the system’s behavior. This

comes with high requirements for

the AI performance and robustness.

Full autonomy is typically only possi-

ble in tightly controlled environments that do not deviate from

the assumptions made during development. On the upside,

the requirements for human-machine interaction are reduced.

Machine Learning Automation

Most AI methods today make use of Machine Learning to

generate models from data. A Proof-of-Concept development

may include many manual steps to generate a model (see blue

elements in Figure 3). However, during operation “beyond

the prototype” the model has to be monitored for its validity

and updated, either continuously or from time to time. In

this case, automating the steps is advantageous in terms of

reproducibility and saving time. The choice of which steps

to automate depends on the individual circumstances of an

application. Figure 3 indicates different possibilities for the

automation of ML-based model generation and when to use

them.

Automated 
Data Pipeline

Model Design

Data 
Acquisition

Data 
Preparation

Training Validation Deployment Supervision

Drift Detection 
and Localization

Automated 
Retrainingenables triggers

AutoML

Figure 3: Automation of Machine Learning steps.

AutoML is used in the initial development phase to explore

the solution space of possible models [10]. This involves the

selection of the model type, optimization of hyper-parameters

for the learning algorithms, neural architecture search, data

augmentation, and so on.

Automated Data Pipelines are advisable when data contin-

ues to be aggregated for training after the initial deployment.

Otherwise, manual data acquisition, integration and cleanup

are big efforts that introduce friction and typically degrade

the quality of the continuously aggregated data. Steps that

are too difficult to automate can be made more efficient with

appropriate user interfaces.

Automated Retraining allows more frequent updates when

AI models continue to be improved after the initial deployment.

Additional advantages are less human errors and the possibility

to make model updates without the continuous presence of

ML experts. Typically the model verification is automated also

for a high confidence in the update model.

Drift Detection and Localization give an alert when a model

no longer accurately reflects the current reality. Then auto-

mated retraining can be triggered besides cyclic model update

intervals or human intervention. Localizing the drift in a larger

system helps to update only those parts that have changed

and hence minimize the data requirements.
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2. Performance

AI performance refers to the accuracy, robustness and speed with which AI systems process information,

make decisions, and execute tasks. This is important to any AI application. Yet it can be tricky to navigate

the performance tradeoffs and to define how much performance is “good enough”.

Model Performance

AI models can have many different purposes. For the discussion

of model performance we however focus on predictive models.

Predictive models come in one of two kinds: classification and

regression. Classification produces nominal outputs (such as

a country classification; Germany, France, Netherlands, and

so on) and regression models predict numerical values (e.g.

21.5 degrees Celsius). The shaded box on the right shows

examples for the most commonly used performance metrics

for classification and regression.

The performance requirements for an AI application can come

in the form of a threshold for a well-known metric. In ad-

dition, the performance requirements can state a trade-off

between different goals. A typical case is the trade-off be-

tween false-positives and false-negatives. In the case of a

medical equipment, where false-negatives lead to missed treat-

ment opportunities, one way to account for this is to set the

weighing-factor for the cost of false-negatives much higher

than that of false-positives in the evaluation metric

The performance metric not only plays an important role for

the evaluation of a model, but also for Machine Learning itself.

The task of the learning algorithms is to reduce the prediction

error on the examples in the training data (the technical term

for this is empirical risk minimization). It is also possible to

use different metrics for model training and evaluation. For

example when additional regularization terms are added to the

training metric to account for prior knowledge or to reduce

overfitting when not enough training data is available.

Model Robustness

The robustness of AI systems refers to their ability to perform

reliably and effectively even in unfavorable or different con-

ditions compared to its training and validation setup. Tightly

controlling the environment of an AI-based system in industry

to remain exactly identical during long-term operations adds

additional cost and hindrance. Hence changes can occur due

to noise from stochastic processes and sensors, drifts in the

external and internal operating conditions, adversarial attacks,

as well as hardware and software failures. Furthermore, in

a complex enough environment it is not possible to have all

possible scenarios in the training data. So the system should be

able to cope with new and not foreseen situations also. Overall,

robustness to small changes is usually a strong requirement for

long-term operations.

The degree of the required robustness varies across different

Example Performance Metrics

Below are example performance metrics for classification

(top) and for regression, i.e. prediction (bottom). The

metrics are defined for an empirical dataset (x, y) ∈ D
with N input-output pairs. For classification, we consider

binary classification with two possible outcomes (positive

and negative). The outcome of a classifier is either true

or false for the respective sample. The number of true-

positive classifications on the empirical samples is tp, the
number of false-negative classifications is fn, and so on.

For the regression case, the output of a predictive model

y ≈ m(x) is compared to the empirical data.

Metric Description

Accuracy The probability of the model classifying any

of the samples correctly: tp+tn
tp+fp+tn+fn

Precision Given a positive classification, with what

probability is this correct: tp
tp+fp

Recall The probability of a positive sample being

correctly classified as positive: tp
tp+fn

Mean

Squared

Error

Average squared difference between the

prediction and the empirical outcome:
1
N

∑
(x,y)∈D

(m(x)− y)2

Mean

Absolute

Error

Average absolute difference between the

prediction and the empirical outcome (less

sensitive to outliers): 1
N

∑
(x,y)∈D

|m(x)− y|

applications. For critical use cases like autonomous driving,

medical systems, or financial systems, robustness becomes

vital. It becomes the shield that protects against accidents,

misdiagnosis, or financial losses, thereby safeguarding human

lives and preventing catastrophic consequences. On the other

hand, even in cases like image recognition, where the stakes

might not be as high, robustness remains crucial in order to

ensure the trust in AI systems. It ensures accurate and reliable

results, even when the input data is noisy or ambiguous.

AI systems are often referred to as black-box systems. The

sheer complexity can make their internal workings opaque

to human understanding. That makes it almost impossible

to assess the robustness of an AI system by gaining insights

into its inner workings. The robustness becomes apparent

when exposing the system to (artificially created) challenging

scenarios. But the way these are created and evaluated is highly

application-specific.
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We propose a few robustness dimensions along which require-

ments can be specified and verified.

Model Input Sensitivity In layman’s terms, in a well-

behaved AI model, small changes in the input result in small

changes in the output. Similar to hysteresis (e.g., debounc-

ing of a physical button) this reduces the amount of flicker

in the output from small random changes. For classification

models the same can be achieved by having large areas in the

input-space lead to the same classification output.

Handling of New Situations If the data coverage of possi-

ble scenarios is not complete, the model performance should

remain high are “degrade nicely” when exposed to scenarios

that are out-of-distribution to what was available during devel-

opment. This is captured already in the typical split of training-

and test-data. But new situations can also arise that change

assumptions used during development that are not even part

of the data.

Self-Adaptation over Time Robustness over longer time-

periods can also refer to the self-adaptation of the system

to changes. This can be achieved by technical and also by

organizational means. In relation to that, supervision and

maintenance are discussed further in the next section.

Table 1 lists contributing factors to robustness, spanning the

entire life cycle of an AI system, starting from data collection

and extending to post-deployment monitoring. Paying careful

attention to these factors is essential for building a robust AI

system. In an ideal scenario, the required level of robustness is

determined even before data collection, during the stage of

defining the use case.

Processing Time

The processing time of training and execution of AI algorithms

can be problematic when either the waiting time for results

becomes too long or if the processing time cannot be covered

by the energy envelope (cost or availability of energy). For

machine learning, the processing time for inference (execution

of the model after training) is usually considerably faster than

the training itself. So the two cases need to be considered

separately. Overall, the processing time depends primarily on

three contributing factors: data, algorithms, and hardware.

Data The data used for training and at inference affects

processing time in various ways. The number of data points

directly influences processing time during training and infer-

ence. Equally important is the type of data. A data point can

be a row in a data table containing a few bytes, an image can

comprise just a few KB or even MB of information, etc.

Algorithms An appropriate algorithm has to be chosen de-

pending on the available data and the use case. Typically,

more complex data structures (e.g., images, text, or time se-

ries) require more complex algorithms than data tables. Many

modern algorithms are structured to allow for massive parallel

computations on specialized hardware.

Factor Description

Data collection Scope, completeness and absence

of bias of collected data.

Data labeling Correctness and absence of ambi-

guity of labels.

Data splitting Splitting data according to specific

features like imbalanced data to

prevent bias and leakage.

Preprocessing steps Meaningfulness of preprocessing

steps and independent application

on data splits.

Model selection Meaningfulness of model selec-

tion and prevention of unnecessary

complex models.

Performance metrics Relevance of performance metrics.

Hyper-parameter

optimization

Prevention of underfitting and

overfitting.

Model evaluation Completeness of evaluation proce-

dure including edge cases.

Model confidence Calibrating of model confidence.

Testing in real-world

setting

Extensive testing under real-world

conditions.

Monitoring Monitoring of model performance

over time.

Drift Detection of data and concept

drifts.

Machine Learning

Operations (MLOps)

Usage of established MLOps meth-

ods and frameworks.

Table 1: Contributing factors to AI robustness (from [2]).

Hardware Suitable hardware must be chosen depending

on the algorithm and underlying data. GPUs with specialized

tensor units allow for massive parallelization, which speeds up

the training of modern neural networks immensely. However,

more traditional algorithms like support vector machines and

decision trees often do not require specialized hardware. Dif-

ferent hardware stacks are used for training and inference due

to the lower computational cost at inference. Also, latency is

not a concern for training, but it may be for inference. Thus,

it is important to consider whether cloud resources or edge

devices are suitable for the given use case.

6



3. Supervision and Maintenance

Supervision and maintenance of AI-based systems is crucial for ensuring long-term operations. Crucially,

AI models in industry may require maintenance and updates after changes in their operational environ-

ment. These changes can be caused by wear and tear, component replacement, different input material

properties, and so on.

The majority of industrial machine learning use cases operates

on data streams whose structures and distributions can change

over time. This non-stationarity makes the supervision and

maintenance of ML models a crucial requirement in order to

ensure their long-term operation. In practice, non-stationarity

of data streams in machine learning use cases results in a cycle

between operation and maintenance (see Figure 4). When

the monitoring of the ML application shows a degradation of

performance or unexpected results, maintenance takes place

where new data is acquired and based on that, the ML model

is adapted. In an ideal world, all steps within this cycle are

automatized. In practice, however, many steps are manually

executed and supervised by humans in order to gain insights

into the behavior of the system.

SubsystementwicklungSubsystementwicklung

Monitoring

Data Collection

Supervision Subsystementwicklung

Data Selection

Model Update

Maintenance

Figure 4: AI operations and maintenance.

There are various reasons behind the non-stationary statistical

characteristics of data streams, leading to a decline in model

performance. These reasons encompass a range of factors

such as adjustments in machine settings, alterations in sensor

parameters (including noise, resolution, calibration, and aging

effects), deterioration in the quality of equipment materials,

seasonal variations, fluctuations in operator preferences and

behaviors, adversarial actions, and hardware or software mal-

functions. We commonly refer to alterations in data streams

as drifts.

Drift Detection

To effectively use machine learning models with data streams

prone to drift, continuous monitoring of both the models and

incoming data is essential. Neglecting this requirement will

result in models that become less precise and less reliable over

time. In most real-world scenarios, drifts occur unexpectedly

and are difficult to predict.

To formalize our understanding of drifts we construct a learning

problem with a set of features X and a set of targets Y . The

challenge is to find a model M : X → Y by training on

historical data.

We distinguish between two types of drifts: data drift and

concept drift. Data drift refers to a change in the feature

distribution P (X) with the feature space X, while concept

drift refers to a change in the dependency of the targets Y on

the features, i.e., in conditional distribution P (Y |X).

Figure 5 shows a visualization for a data drift. A model trained

on the data that is shown in the left canvas will have difficulties

to predict the target y for the three green data points in the

right figure since the model was not trained within that feature

space region. The green line shows the ground truth concept

from which the data originates and the red line shows the

feature distribution P (X).

Figure 5: Example for a data drift that reduces the perfor-

mance of ML models. Figure from [8].

Figure 6 shows a concept drift. The ground truth concept

(green line) is shifted upwards in the right image compared to

the left. A model trained on the data shown on the left will

not be able to properly predict the target y given the X-values

of the data points in the right canvas.

Figure 6: Example for a concept drift, i.e., a drift in P (Y |X).
Figure from [8].

The effect of such drifts is shown in Figure 7, which compares

the absolute error (AE) of two ML models on a simulated data

stream over time. At time step 23 a sudden drift occurs. The AE

increases for both ML models as a result of the drift. A classical
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Figure 7: Absolute error (AE) of two ML models (random for-

est regressor (RFR) and RFR combined with ADWIN)

applied to a data stream. ML models are evaluated

on each new data point and are retrained on the

historical data combined with the new data batch.

Figure from [8].

Random Forest model is not able to adapt to the new state

and hence, after the drift the AE only decreases linearly with

increasing amount of data over time. In contrast, the adaptive

method ADWIN [1] monitors statistical changes in the data

stream (features and targets), detects the drift, aggregates data

from the new state and triggers a re-training of the ML model

based on the new data. Hence, a short time after the drift

occurred, the performance is at its original level. Consequently,

the only way to detect drifts is by closely examining the data

and the model performance.

Drift methods commonly incorporate the following functions:

data aggregation, change detection, andmodel adaption. Each

algorithm has a different way how these functions are imple-

mented. ADWIN, for example, uses a windowing technique to

aggregate batches of data from the stream. The change detec-

tor compares two windows consisting of multiple batches with

each other based on the mean of the distributions within these

windows. If a change is detected, the model is re-trained based

on the latest data window. If no change is detected new data

batches are added to the window. Other data aggregation

techniques are the aggregation of the full data stream since

it’s beginning, abstraction of all data into a model representing

the data distribution etc. Change detectors can be based on

statistical metrics either of the features (and targets if available)

or of the model performance if targets are available. Common

statistical metrics are the mean, variance, Wasserstein distance,

etc. The functionality of model adaption is not part of all drift

methods. Some only output an alarm if a drift is detected,

some automatically trigger a re-training. (see section .

The mentioned methods for realizing data aggregation, change

detection and model adaption are only examples. Developing

a consistent strategy how to derive them for different drift

characteristics is an active field of research.

Retraining for Maintenance

For machine learning systems, the identification of a drift neces-

sitates a corrective response to restore prediction performance

to satisfactory levels. When identified, the drift initiates a re-

training process—a process to update the machine learning

system with a new model version—similar to a maintenance

task for physical systems.

Data Selection for Retraining Data selection for retraining

is a crucial aspect of maintaining the effectiveness and rele-

vance of the resulting model. Some drift detection methods

automatically trigger a re-training of the model based on a se-

lection of data. One option is to use the latest batch, window

or data point and forget everything before. Another one is to

use a discounting factor that assigns lower weights to older

data samples than newer data samples. The golden batch strat-

egy focuses on selecting data that best reflects the evolving

landscape and allows the model to effectively adapt to new

patterns while mitigating the risk of overfitting or bias. This

careful selection of data ensures that the retraining process

includes relevant information and improves the adaptability

and robustness of the model.

Retraining Streaming data offers the potential to enhance

machine learning models over time by incorporating new in-

coming data to enrich the data pool used for training and thus

integrating new information into the model. In this way, ma-

chine learning models are able to adapt to feature or domain

drifts in the data and deliver consistent prediction performance.

However, depending on the specific machine learning prob-

lem, this flexibility in terms of the adaptability of the model is

associated with varying costs.

Primarily, retraining costs depend on the type of machine learn-

ing model used in the solution. The cost dynamics are shaped

by the methodology involved in model training, whether it

necessitates manual labeling of new data (supervised learning)

or can undergo automated training utilizing raw data supple-

mented by automated data preparation steps (unsupervised

learning). Clearly, the involvement of manual tasks requires

more resources in the form of data management and label-

ing tools, potential infrastructure, and human resources. The

frequency of retraining additionally impacts resource alloca-

tion and therefore requires a balance between optimizing per-

formance and operational expenses. Distinct methodologies

delineate suitable retraining intervals. One approach involves

reacting to identified data or model drift, while another en-

tails regular retraining based on the accumulation of pertinent

new training data or temporal intervals, utilizing the entirety

of available data at each iteration.

Automated Retraining Even further, automated retraining

drives the optimization of the continuous operation of machine

learning systems to the extreme. Automated retraining, when

suitable for the type of machine learning model, is a proactive

approach to streamline the retraining process by automating

model updates in response to new data or identified perfor-

mance degradation caused by drifts. By leveraging automated
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triggers, robust pipelines for data, and model retraining sys-

tems, adapt models to changing dynamics with minimal or even

without manual intervention with the goal of achieving con-

sistent model performance. Therefore, automated retraining

incorporates comprehensive monitoring mechanisms to firstly

detect data drifts, model degradation, or operating conditions

and secondly track automated changes and their impact on

the machine learning system. The introduction of automatic

retraining not only increases the adaptability of the model

but also minimizes operational downtime and strengthens the

reliability of the model in dynamic real-world scenarios.

Redeployment Enabling uninterrupted model updates

within live applications necessitates an integrated pipeline

automation process. The introduction of a new model

mandates achieving, at minimum, comparable prediction

performance as the preceding models on the expanded

dataset. Automated testing and integration via a continuous

integration pipeline validate this performance continuity.

Thereafter, a continuous delivery pipeline facilitates live

updates seamlessly. Tailored deployment strategies such as A/B

testing or canary deployments, contingent on the application,

mitigate downtime and customer disruption, ensuring a

smooth transition.

When updating models, it is of utmost importance that the

relevant model metrics and data streams are closely monitored.

This is particularly important in highly automated pipelines,

such as following the active learning paradigm, where the

integration of new training data is predominantly automatic.

Ensuring data quality through vigilant monitoring is essential

in such scenarios to maintain the integrity of the model’s per-

formance and accuracy.

Modeling Strategies with Additional Characteristics

Within the spectrum of modeling techniques, transfer learning,

active learning, and federated learning present distinct

strategies, each influencing the retraining and maintenance of

AI models. Transfer learning harnesses pre-existing knowledge

from a source domain to expedite learning in a target domain,

notably reducing the need for extensive retraining. On the

other hand, active learning optimizes retraining efforts by

iteratively selecting data points for annotation and refining

models incrementally with minimal human intervention.

Federated learning innovates the retraining process in total

by enabling model training across distributed environments

while preserving data privacy, allowing continuous model en-

hancement without centralizing data. Comparatively, transfer

learning expedites retraining by leveraging prior knowledge,

while active learning strategically reduces annotation efforts.

Historizing and Versioning

While updating the machine learning system, with the machine

learning model in its core, and iterating through revisions of

data, models, and application code, the challenge of keeping

track of revisions, their dependencies, and compatible coun-

terparts arises. Maintainability of data, model, and the target

system (embedding the machine learning system) extends the

common approach of tracking application code known from

traditional software development practices and drives repro-

ducible machine learning strategies.

Reproducible ML Reproducible machine learning relies sig-

nificantly on robust versioning to track model versions and

runtime environments. Versioning aids in quickly identifying

errors by linking specific predictions to their respective model

versions, enhancing debugging and system reliability. Addi-

tionally, clear versioning ensures transparency and compliance,

documenting the exact models used for predictions, which is

essential for accountability and regulatory adherence. Lastly,

versioning minimizes discrepancies between development and

production environments by maintaining consistency across de-

ployment environments. Therefore, the versioning process for

reproducible machine learning systems revolves around three

main artifact types: data, models, and the target system.

• Data Versioning is essential for maintaining integrity and

evolution during model development. Tracking relevant

information when data points are added, removed, or

modified preserves a historical record of iterations and

enables collaborative efforts among diverse teams. Ver-

sioning data is specifically important for understanding

performance drifts and accelerating potential compliance

requirements.

• Model Versioning and Lifecycle Management are im-

portant for clarity and accountability of machine learning

systems. The lifecycle management of versioned models

necessitates constant tracking of iterations, maintaining a

comprehensive model history, and ensuring reproducibility

of model outcomes. Essential details like configurations,

hyperparameters, and involved data must be captured.

• Target System and Environment Versioning is crucial

for comprehensive impact analysis and system stability.

The integration of ML (and its runtime environment) into

production systems results in complex integrated systems

with a large number of hardware, software, and ML com-

ponents. Documenting changes in these systems is vital,

particularly for data-driven setups where performance in-

consistencies often require contextual insights for reso-

lution. Starting documentation could include details on

environment configurations, software versions, and de-

pendencies, helping quickly pinpoint issues and resolve

them effectively.
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4. Integration and Deployment

AI-based systems need a technical environment for computation, storage and communication. The

different parts of the AI solution can have very different requirements (e.g., for training vs. operations)

and span heterogeneous IT and OT environments.

An AI-based system in industry typically decomposes into sys-

tem components that each have different requirements for

their integration and deployment environment.

Decomposition into System Components

The decomposition is highly specific and different for every

use case. But there are functions that typically get grouped

together in a system architecture. We discuss these typical

groupings as a guideline for the system decomposition. The

relevant requirements for the integration and deployment en-

vironment are discussed afterwards.

Data Collection and Storage The data collection and stor-

age can be thought of as a “data collection pipeline” in its own

right. This includes the data collection, filtering and preprocess-

ing, data integration (for example to synchronize timestamps)

and storage.

We typically differentiate between different types of data.

While a relational database (think SQL) could handle all of

these in principle, there are specialized technologies for higher

efficiency and convenience.

Time Series Data

• Example Use Case: Continuous sensor measurements

• Example Technology: Time Series Database (e.g., InfluxDB,

ClickHouse)

Discrete Event Data

• Example Use Case: Alarm notifications

• Example Technology: Relational database with an index

over the timestamp and alarm source

Unstructured Object / Blob Data

• Example Use Case: Camera images

• Example Technology: Object store using the S3 API

Meta-Data and Context Information

• Example Use Case: Product recipe information

• Example Technology: Relational database, Ontology-

based triplestore

Infrequent steps in the data collection process can be handled

manually. Each manual step however increases frictions when

the data collection continues during operations. Then it be-

comes more difficult to maintain a current, high-quality and

large dataset for retraining after the initial deployment.

Model Development, Training and Validation In a ma-

chine learning context, the model development builds upon the

collected data. The data is used both for development and train-

ing (the model learns and gets optimized from the data) and for

validation (empirical performance estimation of the resulting

model). For that, the environment for the model development

is typically catered towards the needs of developers—less so

for the needs of an operational deployment.

Model Serving Model serving describes the operational ap-

plication of a model after training. The long-term deployment

typically happens in a different environment from the training.

It can even happen that different programming languages are

used for the model development and model serving. Then only

the learned model parameters are shared between the two.

The application of a machine learning model is typically much

more resource-efficient than their training. So the model serv-

ing can happen in a more resource-constrained deployment

environment.

User Interfaces User interfaces (UIs) are essential for making

AI systems accessible and user-friendly. User interfaces can be

graphical layouts on computer screens. But interfaces can also

be physical (e.g., buttons), voice-controlled, and so on. See

Chapter 5 for details.

Human operators require interfaces to interact with an AI-based

system as an assistance functionality, in a human-in-the-loop

approach, or to supervise autonomous operations (cf. Section 1

on the autonomy levels). In addition, there can be interfaces

where the operator needs to provide information to the system

for its current operations and for the ongoing data collection.

For example when he has manually changed machine settings

or to annotate the reason for an unplanned machine downtime.

Supervision and Maintenance Supervision and Mainte-

nance are described in Section 3. Depending on the level of

access, supervision and maintenance also require dedicated

user interfaces. These are different from the operator inter-

faces geared towards the daily interaction. For example the

supervision might benchmark the performance across different

factories and over a longer time-period. Then the information

is not only required locally.

Integration and Deployment Requirements

The following categories for the integration and deployment

requirements can be mapped to all components resulting from

the system decomposition.
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Figure 8: Exemplary illustration of the involved system compo-

nents besides the AI components.

Centralized vs. Distributed Facing the challenges of data

privacy, bandwidth, and availability of AI-based applications,

the decentralization of AI-based applications has brought up

new learning approaches with unique advantages but in turn

other challenges and extended requirements.

Distributed and federated learning are pivotal in the context

of decentralization, as they allow multiple AI models to learn

from decentralized data sources without sharing the data itself.

Distributed learning involves partitioning the learning process

across multiple computational nodes, each processing a subset

of the overall data. This approach is especially beneficial in

environments where data is voluminous and geographically

dispersed. By distributing the computational load, systems

can handle larger datasets more efficiently, speeding up the

training process while reducing the bandwidth needed for data

transfer. In industrial applications, distributed learning can train

AI models on data from multiple production facilities, enabling

optimizations tailored to local conditions without requiring

voluminous data movements to train one central model. Op-

tionally, model updates can be returned to the central model

to improve it over time without sending potentially critical and

voluminous data.

Local Data (B)

Local Model (B)

Local Data (C)

Local Model (C)

Local Data (A)

Local Model (A)

Site A Site B Site C

Global Model
(A+B+C)

Federated Server

Figure 9: Illustration of federated learning with three sites.

Federated learning takes the concept of distributed learning

even further beyond single companies. Each node in the fed-

erated training network trains a local model on its own data

(as in distributed learning), but model updates are shared and

then combined centrally. This is illustrated in Figure 9. This

method not only preserves privacy but also minimizes the risk

of data breaches. Federated learning is ideal for scenarios

where data cannot be shared due to regulatory or compet-

itive reasons, such as in healthcare or financial services. By

leveraging federated learning, organizations can benefit from

collective improvements in AI models while ensuring that each

participant’s data remains within its control.

Access to local resources Some function cannot be readily

moved to a different environment because they need access to

local resources. For the discussion, take the examples of access

to OT interfaces for industrial field devices and GPU resources.

Field devices in an industrial setting have special requirements

not commonly found in office IT. Operational technology (OT)

encompasses tools and technologies for the operation of in-

dustrial applications, such as Programmable Logic Controllers

(PLCs). Because of technological differences, OT solutions are

often separate from enterprise IT systems. They further often

use dedicated communication channels (such as fieldbus pro-

tocols or OPC UA in a dedicated TCP/IP network) that are not

forwarded into the office-IT environment.

GPUs, the specialized hardware commonly used for machine

learning, are typically deployed in specialized compute clusters.

Typically large data volumes are first transferred to a storage

that is close to the GPU. Then random data access patterns

can be readily used on the local GPU resource for training.

Robustness Development typically happens with a developer

present. And for the training of a fixed model, the training

pipeline needs to work “just once”. So the robustness of the

development environment is usually not an issue. The model

serving on the other hand has much higher robustness require-

ments. This includes physical toughness (e.g., in environments

with vibration or high temperatures) and also the overall avail-

ability (e.g., noWindows Updates forcing a restart in the middle

of operations).

Scalability and Bandwidth Requirements The volume of

data and the available bandwidth are crucial in determining

whether the data can be transferred to the cloud for processing

or if local preprocessing is needed. This involves assessing the

amount of data and ensuring that the bandwidth is sufficient

for transferring data to the cloud. Additionally, the speed at

which data needs to be processed plays into whether latency

issues might necessitate local data processing, making it im-

perative to evaluate the infrastructure’s ability to meet these

requirements.

Scalability is crucial for AI systems to efficiently handle varying

workloads depending on the lifecycle phase. It involves the

system’s ability to expand its processing capacity in response to

increased demands. Key considerations include choosing be-

tween horizontal scaling (adding more machines) and vertical

scaling (upgrading existing hardware), emphasising flexibil-

ity, cost-effectiveness, and the ability to manage data volume

growth. Effective scalability ensures that AI applications remain

responsive and cost-efficient under different operational loads.

Redundancy, Availability, and IT Operations Capabilities

The need for redundancies in data, applications, and network
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access highlights the importance of computing infrastructure

availability. This directly influences the decision on whether to

manage IT operations in-house or to opt for outsourcing or

managed solutions, depending on the available competencies

and capacities.

New data continues to be aggregated from both production

sites and is stored in a cloud environment. Data selection,

preprocessing, and retraining are performed in the cloud envi-

ronment where GPU resources can be dynamically added.

Access Control and Governance Identifying the stakehold-

ers who need access to the primary data and processed out-

comes, as well as determining the systems that require data

access at various processing stages, are crucial for defining

access control measures and the requirements for API manage-

ment. Additionally, the necessity for different environments for

development, staging, and production underscores automation

requirements, emphasizing the importance of a well-structured

system integration and deployment strategy.

Implementing decentralized learning methods requires careful

consideration of data access rights and governance structures.

The data generated by industrial applications can be highly sen-

sitive in a competitive market environment, often coming with

stringent access restrictions. For instance, a machine builder

might supply an AI model where the machines are operated

by a different organization that does not want to share oper-

ational data. In such cases, retraining of the AI models after

deployment must be confined to on-site activities only, which

significantly influences the overall integration and deployment

architecture. Clear policies must therefore be established to

define who can contribute to the model, how data is accessed,

and how contributions are aggregated in decentralized learning

approaches. These considerations ensure that all participants’

data remains within their control, enhancing trust and facilitat-

ing compliance with regulatory requirements.

Company-Wide Deployment Strategy

There is no one-size-fits-all solution for a company-wide and

overarching strategy for the deployment environment and in-

tegration architecture of AI-based applications. As an example

for the environments close to the data source, while one com-

pany might prefer to set up its own on-premise data centers,

another might opt for a specific cloud provider and its edge

computing solutions. A number of trade-offs in terms of in-

tegration and deployment requirements affect organizational

strategy decisions.

Cloud vs On-Site The choice between cloud and on-site

deployments is pivotal in shaping a company’s AI application

strategy. Cloud-based solutions offer scalability, flexibility, and

reduced upfront costs, as resources can be adjusted based on

demand, and companies can leverage the latest technologies

without significant investments in physical infrastructure. Fur-

thermore, opting for a specific cloud provider can streamline

operations through integrated services and support, potentially

offering competitive advantages in agility and innovation.

On the other hand, on-site deployments provide companies

with greater control over their data and systems, which can be

crucial for meeting stringent data security and privacy require-

ments. This approach involves significant upfront investment

in physical infrastructure and ongoing costs for maintenance

and upgrades. However, it allows for customized solutions

that are tightly integrated with existing processes and systems,

potentially offering better performance for certain applications

due to reduced latency and direct control over the hardware

environment.

Technology Harmonization / Virtualization Virtualization

is a key enabler for the ongoing convergence of OT and IT, af-

fecting deployment strategies. Organizations can leverage the

benefits of virtual machines, containers, and software-defined

infrastructure by virtualizing OT systems. This allows the de-

ployment of IT technologies and applications within the OT

environment, enabling greater flexibility, scalability, and inter-

operability. In a converging infrastructure, the connectivity

between OT and IT components is increasing. More IT capa-

bilities are being introduced into the OT domain through this

connectivity. This includes the integration of data analytics,

machine learning algorithms, and advanced visualization tools

into OT systems. The increased connectivity and virtualization

of OT systems allow for improved data collection, analysis, and

decision-making, leading to enhanced operational efficiency

and productivity.

IT-Security Securing AI systems requires a company-wide

IT-Security framework. Key measures include robust access

controls to prevent unauthorized access to models and sensi-

tive data and encryption protocols to maintain confidentiality.

Regular vulnerability assessments and penetration tests are vi-

tal for detecting and addressing security weaknesses in these

complex systems. Secure development practices, such as in-

put validation and sanitation, are critical to prevent adversarial

manipulation. Continuous monitoring is crucial for detecting

system anomalies and responding swiftly to security incidents.

The secure deployment of AI applications should ensure that

interfaces and connections comply with industry-standard se-

curity protocols, with regular updates and patches to address

new threats.

Furthermore, compliance with the international standard IEC

62433 is crucial for organizations in the industrial sector. This

standard provides guidelines to enhance IT security and pro-

tect critical infrastructure from cyber threats. It emphasizes

the importance of robust access controls, secure communi-

cation protocols, cryptographic protections, continuous risk

assessments, and regular security audits. Compliance with IEC

62433 helps organizations proactively manage and mitigate

cyber risks, essential for safeguarding industrial systems. By

adhering to the standard and further security requirements as

part of the company-wide deployment strategy, organizations

can establish a robust defense against cyber threats targeting

AI systems.
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5. Acceptability

Human acceptance is key to the long-term success of AI-based systems. Acceptability needs to be achieved

for the operating organization and the individual operators interacting with a solution.

Agency of the Operating Organization

The autonomy level describes the agency of the human opera-

tor. In addition, there is an agency on the organizational level.

Often times the team developing an AI-based application is

different from the operational team. In addition, the develop-

ment team might come from an entirely different company,

such as engineering service providers, consultants and research

partners.

In our experience, operational organizations want to retain

agency. They try to limit a possible loss of control if business-

critical functionality is handled by outside parties. Hence, the

agency goes beyond the daily operations and also encompasses

supervision, maintenance and continued development.

Access to Data In addition to considerations of autonomy

and agency, access to data is a critical aspect of operating AI-

based systems in industry. The operational organization must

have unrestricted access to relevant data sources to facilitate

effective system performance and decision-making. Access

to comprehensive and high-quality data enables the AI sys-

tem to learn, adapt, and generate valuable insights that drive

operational efficiencies and competitive advantage.

Continued Development Continued development of AI-

based systems is essential for innovation and competitiveness in

the industrial landscape. This involves introducing product- or

system-level changes to enhance functionality, efficiency, and

user experience. However, the process of continued develop-

ment also raises questions about access control and intellectual

property rights, particularly regarding code-level access and

collaboration with external partners.

To remain agile and responsive to market demands, organiza-

tions must be proactive in introducing product- or system-level

changes to their AI-based systems. This may involve imple-

menting new features, optimizing algorithms, or integrating

feedback from end-users and stakeholders.

Granting code-level access to external parties raises concerns

regarding data security, confidentiality, and intellectual prop-

erty protection. Organizations must establish clear protocols

and agreements to govern access rights, responsibilities, and

ownership of code assets.

User Acceptance

The operator agency describes the access levels and degrees

of freedom for the human operator that interacts daily with

the system. This is important as the success of many AI-based

systems hinges on the collaboration with the human operator.

Of course, this not only applies to AI-based systems, but to

the introduction of new technologies in general. There are,

therefore, already several approaches and models for catego-

rizing and addressing the challenges of acceptance. According

to the Technology Acceptance Model (TAM) [5], the two key

factors for acceptance are the »perceived usefulness« and the

»perceived ease of use«. These models have recently been

expanded to include AI-specific aspects . A key factor here is

usually »trust in the AI system«. There are various approaches

to building and maintaining this trust.

Human-Centered quality The quality of the AI-based sys-

tem also plays a decisive role in acceptance. In particular, the

aspect of »perceived usefulness« is strongly influenced by this.

However, quality is also a key factor for trust, as trust in the

system’s predictions decreases with every misjudgment.

The aspect of »Human-Centered quality« is particularly im-

portant for the quality of interfaces to users. ISO standard

9241-220 [7] is based on four dimensions:

• Freedom of harm from use

• Accessibility

• Usability

• User Experience

The interfaces should therefore be designed in such a way that

errors are avoided, and users have barrier-free access. It is

also about effectiveness and efficiency during use (usability).

If the use also creates a positive feeling (user experience), all

dimensions of »Human-Centered quality« are fulfilled.

Acceptance research has shown that these dimensions also

contribute to trust. This means, for example, that people are

much more likely to forgive errors in systems that they like to

use than in systems they don’t like. To achieve this effect, the

user experiencemust therefore be high. This in turn requires the

fulfillment of needs. One example is the need for competence;

users want to see and experience themselves as competent at

all times. With AI-based systems, attention must therefore be

paid to how exactly the collaboration between humans and AI

is designed so that users do not feel left out or less competent,

see also the section Human in the Loop.

For the specific design of the interfaces, for example what

should be displayed when and how in order to increase accep-

tance, please refer to the sister study: »Design of AI systems«

[12]. It is based on a case study in which different design vari-

ants were compared with each other and evaluated by users.

13



User Documentation and Training User documentation

supports users in learning and using systems. For onboarding,

additional training is often offered in which the handling of

the system is demonstrated with example use cases and users

can practice. If the content of these formats is well designed,

it can increase user acceptance.

Ideally, the content is adapted to the user’s previous knowl-

edge, skills, tasks, and roles. In practice, explanations of the

meaning and purpose of individual functions and processes

are considered particularly valuable by users. Understanding

the context and background often increases trust in the system

and therefore acceptance.

For AI-based systems, formulations that focus on the type

and nature of support for the user are suitable. This clearly

describes the added value and directly shows where the user’s

help is necessary, which aspects they are responsible for and

what options they have. A nice side effect of training is the

opportunity to learn how users behave and which aspects

may cause difficulties. Similar insights can also be gained by

analyzing which sections of user documentation are accessed

and how often. AI-based systems may be able to use the data

obtained in this way directly.

The extent to which it should be explained in the documen-

tation or the system itself that AI is being used and how it

works depends on various parameters. People often state that

they want to know whether it is an AI-based system. From

an ethical point of view and for reasons of transparency, it

therefore makes sense to point this out. Explaining how the

system works can increase acceptance (see the following sec-

tion). However, the level of detail of the explanation must also

be adapted to the individual users or at least the various roles.

Explainability Explainability refers to the ability to under-

stand and interpret the decisions made by machine learning

models. It allows to comprehend the reasons behind the predic-

tions or classifications produced by an AI model. Explainable AI

aims to develop models and techniques that provide transpar-

ent and interpretable results. However, there is often a trade-off

between explainability and algorithmic performance. Highly

complex models such as deep neural networks may achieve re-

markable accuracy but lack interpretability. On the other hand,

simpler models like decision trees or linear regression models

are more interpretable but may sacrifice performance in certain

scenarios. Balancing the trade-off between explainability and

performance is a critical consideration when operationalizing

AI solutions. It depends on the specific use case, the level of

interpretability required, and the impact of potential errors or

biases. Organizations must carefully assess the needs of their

stakeholders and regulatory requirements to determine the

optimal level of explainability in their AI systems.

Change Management When AI-systems are deployed in

practice, change management may become relevant. Some

AI systems just work in background without changes for the

actual work and the corresponding humans. Others come with

more or less intense changes for the work. This may result in

the necessity to improve the skills of the affected employees

or even completely change the job they do. This may need

intense training which takes not only the time for training, but

also for planning, at least when other departments or even

other enterprises are involved.

In addition to the training time, the willingness of the affected

employees is of relevance. Humans are creatures of habits.

Learned and repeated working processes and steps are op-

timized and automatized by the subconsciousness, which is

both advantageous (in terms of performance) and disadvanta-

geous (for changes). Humans tend to reject changes of already

learned working processes and steps, therefore some kind of

change management should be used, especially, when the

processes to be changed should work uninterrupted.

Many different variants for change management exist, whereas

the most important factor is that the affected employees get

enough time for a proper change and possible boycotts are

prevented. A simple and classical variant is the 3-phase change

management variant of Kurt Lewin, i. e. 1) Unfreezing, 2)

Change, and 3) Refreezing.

User Feedback By involving users in the design of systems,

their requirements and needs can be considered at an early

stage. The human-centered design process [6] describes how

this can look like in the various phases. This participatory design

has also been proven to increase user acceptance.

It is also important to analyze user feedback after a system has

been implemented. This involves both active feedback—the

users speak up about something—and passive feedback—the

system or certain functions are not used or are only used by

certain groups of people. This step is particularly important for

AI-based systems, as the systems and their functionality may

change again.

Ideally, possible feedback channels for users should already be

planned during the design phase and set up accordingly. It

should also be clarified how passive feedback, e.g., the non-use

of certain functions, can be collected during runtime.

Long-Term Availability

Industrial processes often have a long-term perspective on their

capital investment. It is not uncommon for them to go even

beyond 10-year usage scenarios. Looking at the fast progress

in AI technology, can a state-of-the-art ML model from today

still be run 10 years into the future? Is the hardware (e.g., GPU)

still available and supported? The same questions also arise for

the availability of human experts.

Availability of Technology In the rapidly evolving landscape

of technology, both software and hardware can quickly be-

come outdated. This poses challenges for AI solutions that

rely on specific software frameworks, hardware architectures,

or proprietary technologies. To address this issue, building on

(Open) standards is increasingly becoming a viable approach,

and it is expected to become more common in the future.

Standards such as OPC UA for machinery communication, As-
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set Administration Shell (AAS) for semantic information model-

ing of digital twins, and the Open Neural Network Exchange

(ONNX) format for model artifacts provide specifications for

interoperability and compatibility among different components

and systems. By adopting these standards, solution providers

can future-proof their AI solutions and mitigate the risks as-

sociated with technology obsolescence. Implementations of

these standards may vary, as different vendors and developers

may offer their interpretations or extensions. However, ad-

hering to a standard ensures that even if a particular solution

provider discontinues their products or services, the AI solu-

tion can still function seamlessly with alternative compatible

implementations.

Building on (Open) Standards offers several advantages. It pro-

motes vendor independence, allowing organizations to switch

solution providers or integrate new technologies without signif-

icant disruptions. It also fosters collaboration and innovation by

enabling the exchange of models, data, and tools between dif-

ferent systems. Moreover, standards facilitate the development

of ecosystems and marketplaces where solution providers can

offer compatible products and services. However, open stan-

dards and open-source software need to be maintained. Many

companies thus rely on third parties for support of open-source

packages.

Preservation of Development Artifacts After deployment,

industrial applications that are operational without regular

maintenance effort tend to get out of focus. Years after the

initial development, changes to the overall system may require

to access development artifacts are now lost to time and organi-

zational changes. Re-engineering of industrial control units to

overcome lost development sources is not uncommon. But in

case of AI-based systems the re-engineering can be much more

costly. Up to repeating the entire development cycle including

the generation and curation of dedicated training data. For

that we recommend the preservation of development artifacts

across the full development cycle using versioning approaches

for data, models and target systems (see section 3) and by

documenting the development process.
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6. Regulation Compliance

Many industries are subject to legal regulations and standards. In addition, general regulations for AI

methods have appeared. This needs early consideration in a development project, because compliance of

AI-based systems can be a large effort and not all AI methods are suited for it.

Industry-Specific Regulation

AI certification has received increasing attention in recent years.

There are several institutions that push their own certificates on

the market. These certificates do not meet any regulatory or le-

gal requirements but refer to a confirmation of the compliance

with certain requirements published by the issuing organization.

[13] provide a detailed overview of the topic.

There are several norms, that are applicable for AI systems. The

most important ones are the emerging AI norms which are

provided by the committee ISO/IEC JTC 1/SC 42. Those norms

deal with various aspects including risk management, data,

transparency, bias, testing of AI systems and many more. At

the time of this publication there are 25 Published ISO standards

and 32 ISO standards under development by the committee.

Non-AI-specific norms worth mentioning are IEC 61508—a

standard for functional safety of electrical, electronic and pro-

grammable electronic safety-related systems—and ISO 21448,

addressing the safety of advanced driver-assistance systems

and autonomous vehicles focusing on the potential hazards

arising from the insufficiencies of the intended functionality.

AI-Specific Regulation

EU AI Act The EU AI Act [4] sets requirements on AI systems

based on the risk of the use case. AI systems are categorized

into four risk classes as shown in Figure 10: unacceptable risk,

high risk, limited risk, and minimal risk. AI systems with unac-

ceptable risk are outright banned. AI systems with minimal risk

are not subject to any special requirements. AI systems with

limited risk are subject to transparency obligations. AI systems

with high risk need close examination regarding the AI Act.

These systems may be implemented but are subject to a confor-

mity assessment and must meet the requirements formulated

in Articles 9-15 of the AI Act. Table 2 gives an overview of

these requirements and links corresponding chapters of this

whitepaper. For General purpose AI (GPAI) models the AI Act

distinguishes between GPAI model provider and GPAI system

provider. GPAI model providers have obligations formulated in

Articles 53, 55 and Annex XI of the AI Act, and GPAI system

providers must conduct the risk assessment and comply with

the corresponding obligations.

US Executive Order and AI Bill of Rights The Executive

Order on the Safe, Secure, and Trustworthy Development and

Use of Artificial Intelligence issued on October 30, 2023 by the

Biden administration covers principles of safety and security, pri-

vacy, civil rights, consumer and worker protections, innovation

and competition, and national security. It directs the creation

of best practices for development and deployment and regula-

tory guidance or requirements for critical AI uses. The Blueprint

for the US AI Bill of rights (2022) contains five principles, re-

garding the design, use, and deployment of AI systems: Safe

and Effective Systems, Algorithmic Discrimination Protections,

Data Privacy, Notice and Explanation, Alternative Options. The

principles are not-binding but intended as guideline.

General Regulation Requirements for AI

Traceability Traceability is an essential aspect of operational-

izing machine learning systems. It involves documenting vari-

ous aspects over the lifespan of an AI solution, including data,

development, and operations. To ensure traceability it starts

with documenting the journey of the data in the machine learn-

ing process. This includes information about the data sources,

data preprocessing steps, and any data transformations applied.

Documenting the development process involves recording the

choices made during model selection, feature engineering, and

parameter tuning. Additionally, documenting operations en-

tails keeping track of the deployment environment, system

configurations, and any changes made during the operational

phase. A detailed method for documenting an AI solution,

taking into account the requirements of the EU AI Act, is given

by [2].

Documentation plays a vital role in maintaining transparency

and accountability throughout the lifecycle of an AI solution.

It enables stakeholders to understand the decision-making

Figure 10: Overview of EU AI Act risk classes.
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AI Act requirement (Art.

9-15)

Explanation Corresponding chapters

Risk management system Measures to minimize and deal with risks during the

entire AI systems lifecycle

Not addressed

Data and data governance Focusing on the quality of data and the absence of

bias

Absence of Discrimination

Technical documentation Comprehensive technical documentation Traceability

Record-keeping Logging of events during operations Historizing and Versioning

Transparency and provision of

information to users

AI systems need to be transparent and provide

information of its usability and documentation

User Acceptance,

Human-Centered quality, User

Documentation and Training

Human oversight Enabling of human interaction and provision of

human-machine interface tools

Autonomy Level

Accuracy, robustness and

cybersecurity

AI systems must achieve an appropriate level of

accuracy, robustness and cybersecurity and perform

consistently in those respects throughout their lifecycle

Model Performance, Model

Robustness, IT-Security

Table 2: Overview of EU AI Act requirements, explanation and relevant chapters in this document that address the requirement.

process, identify potential biases, and address concerns related

to fairness, ethics, and compliance.

Absence of Discrimination Bias-free AI is essential to ensure

fairness, equality, and ethical decision making. Unwanted

bias in AI systems can lead to inaccurate or unreliable results,

discriminatory outcomes, and perpetuate existing social biases

or inequalities and can lead to a lack of trust in the AI system

and AI in general. It is necessary to consider the motivation of

the creator and users and the potential harm of bias.

An compelling example are medical applications. Research has

shown, that AI systems can outperform physicians in specific

tasks, e.g., in detecting breast cancer through mammography

screening [11]. While the potential of AI is huge, it can easily

lead to undesirable outcomes if a bias is present.

Consider an AI system, that is being installed to decide whether

a patient is suitable for an artificial hip. Making an informed

decision requires comprehensive knowledge of a patient’s med-

ical record and current health status needs to be considered. To

get the necessary information the data will likely be collected

from multiple sources like physicians, health history and current

health status. We want to end up make the best decision for

the patient. Therefore, we must carefully consider the data

sources and their potential biases. Since the health insurance

is interested in paying the least amount of money possible,

their data of past hip replacements may contain a bias that

leads to the decision that an elderly patient is not suitable for

a hip replacement, even though there is no medical reason to

supports this statement.

In summary, avoiding bias in AI systems requires careful data

collection, unbiased model development, and ongoing moni-

toring and evaluation of the AI system to identify and correct

any biases that may arise.

AI Model Cards

AI model cards are a structured description of a model’s

technical properties and additional background informa-

tion such as usage rights. Model cards are commonly

used for the evaluation and selection of models originat-

ing from a different developer group, such as reusable

foundation models.

A detailed method for using model cards to document

an AI solution and approaching regulatory compliance,

especially considering the requirements of the EU AI Act,

is given by [2]. The method considers the entire lifecycle

of AI systems using four cards (use case, data, model,

operation).

Data Protection If personal data is used for an AI system,

the organisation must comply with the General Data Protection

Regulation (GDPR). The GDPR sets rules on how personal data

is collected, processed, and stored. Core principles include ob-

taining consent, providing transparent information, ensuring

data security, and respecting individual rights. Therefore, be-

fore an AI project begins, it should be verified whether personal

data will be processed and, if so, whether the GDPR applies;

consultation with the works council and other stakeholders is

advisable.

Privacy-by-design principles should guide every stage of de-

velopment and deployment, incorporating data minimisation,

anonymisation, and pseudonymisation wherever feasible to

safeguard individuals’ privacy.

Finally, documentation of all processing activities is essential

for demonstrating compliance, including the legal basis, data

categories, and retention periods. Organisations must also be

ready to meet data-subject requests such as access, rectification,

or deletion without delay.
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Solution Recommendations

Different from ad-hoc prototype development, we make recommendations for the development of

AI-based systems for operational use in industry: i) define explicit requirements for the long-term

operational use ii) use a visual representation of the overall system using a data-pipeline viewpoint to

communicate with stakeholders, iii) follow a defined process for the project management that includes

the management of data availability, and iv) build solutions on top of an established technical platform.

Explicit Requirements

The requirements encountered during long-term operations

need to be anticipated during development. Agile development

practices aim at creating a usable first version early on and to

iterate based on stakeholder feedback. In the development of

AI-based solutions for industry, it may however happen that

a system can only go operational in the target environment

when development is already in an advanced stage. This can

limit the possibility for direct user feedback. This situation has

the increased risk that some requirements are encountered at

a stage where fundamental changes to the overall system have

become very costly.

Our recommendation is to use the requirement

categories from this document to make the require-

ments for the long-term operational use explicit early

on during development.

The following are common examples of missed requirements

that hinder long-term operational use. First, consider that an

AI system is integrated into a cyber-physical system, such as

an automated production line. The system environment how-

ever changes its behavior over time. For example by wear

and tear, component replacement and parameter tuning of

the system operators. It might become necessary to update

AI-based models to the new reality which is not reflected in the

original training data. This results in requirements, such as the

continued availability of data and access to maintenance inter-

faces of the AI-based solution. Second, the system operator

personnel might not trust in the performance of an AI-based

solution or even perceive it as hostile to their personal status

as operations experts. Having an AI that is able to explain

its decisions (and therefore allow human overrides when the

operator has additional context) can increase the acceptability.

This has a large impact on the maintenance and upkeep of

the AI-based system – which is often directly influenced by the

motivation of the operators.

Visualize Data Flows: From Concept to Code

An AI pipeline concept which takes into account all data sources

and requirements on the application, enables reliable project

planning. An example of such a pipeline is shown in Figure 11.

The aim is to draw the data processing pipeline of the whole

system in order to create awareness about the necessary mod-

ules and stakeholders that have to be involved. An excerpt of

important questions that should be considered in the pipeline

concept are listed in the box above.

Our recommendation is to use a visual represen-

tation of the data flows in the overall AI system to

effectively communicate with stakeholders.

Answering those questions in the first phase of the project will

probably raise many more questions but will help to keep an

eye on all the important aspects. It is advisable to follow an

established AI process model which structures and coordinates

the development process and already incorporates many of

these aspects.

Figure 11: Example machine learning pipeline diagram [17].

During development of the AI system, the AI pipeline concept

is extended by many details and realized on a technical level.

MLOps frameworks will help to implement AI pipelines, man-

age and operate different versions of AI models that will be

trained during the system’s lifecycle.

Project Management Process

Process models guide through certain processes such as man-

aging a project. There are various existing process models,

especially for general project management. A fundamental

characteristic is the focus of process models: organizational vs.

content-based. Organizational process models focus on the

labor organization, including topics such as communication,

meetings and the fundamental type of project organization

(plan-driven vs. iterative vs. agile). Content-focused process

models guide through the process with recommendations on

the contentual topics and their interdependencies. AI projects

are a specific type of IT projects with a higher level of un-

certainty and thus, the usage of an agile or at least iterative

organizational approach is recommended. This does not mean,

that milestones and deadlines should be avoided, but that

18



planning should include possibly relevant iterations with the

accompanying resource requirements. Besides that, several

new aspects come with AI projects, which can be covered by

content-focused process models, integrating known project

steps with adaptions and supplements from the domain of AI.

Our recommendation is to use an explicit and con-

tinuous process model for AI project management.

If possible, a model with concrete tool recommenda-

tions for the (new) challenges of AI should be used.

When deciding on a process model to use, there are several

meta-characteristics that should be taken into account [14].

The continuity is one of the most important of such character-

istics. It means that a process model starts with the beginning

of a project (including idea development and project setup)

and goes up to the deployment in practice, including affected

humans, processes, and the technology. Many process models

only take into account completely new content, such as ex-

ploratory data analysis and model building. This is not wrong,

but bears the risk of forgetting relevant aspects of a project,

effectively reducing the success chances. A common problem

according to our experience is, that topics like system archi-

tecture, data architecture and integration are often forgotten,

which may lead to silo systems. Such systems usually sum up

technical and organizational debts, which result in long-term

costs. Another very important characteristic is the presence

of concrete tool recommendations. It is nice to know which

problems and tasks might arise, but even better when a way

to handle them is provided. The focus on pragmatic aspects of

real-world problems is important, too, since theoretical opti-

mums tend to be far too extensive and costly for application in

practice.

A recent survey of data science process models has investigated

available models with a focus on continuity and the presence of

tool recommendations [16]. The results show that all observed

models have major gaps, especially in the early and late phases

of project implementation. This includes the current industry

standard, the CRoss Industry Standard Process for Data Mining

(CRISP-DM) [3], as well as several newer models.

AI projects are interdisciplinary and rely on clearly defined roles

across all phases of a project. A combination of data scien-

tists, technical expertise, and many more are usually part of AI

projects. Early planning should assign specific tasks or roles to

named individuals, teams, or partners to avoid delays, extra

costs, or failure. AI process models should include all key roles

to ensure nothing is overlooked, especially the AI-specific ones

like data officers and AI experts.

Two recent models address the discussed challenges and are

briefly described in the following in addition to CRISP-DM in

its role as the current industry standard.

CRISP-DM The CRISP-DM was published in 2000 for data

mining projects. It focuses primarily on understanding, ex-

ploring, and modeling data (a detailed gap analysis can be

seen in [16]). The subsequent evaluation of data is aligned

with the business understanding, and the outcomes determine

whether to initiate the modeling cycle again or deploy the

model. CRISP-DM assumes the presence of data, but does not

take into account data sources, such as system components

that can influence both the data and the model. Consequently,

the process model lacks the capability to articulate the inter-

action between data quality and the functionalities of the ML

component.

DSPG The Data Science Project Guide (DSPG) is a model de-

veloped based on the previously mentioned survey to close the

gaps in continuity and tool recommendations. The whitepaper

is published under the non-restrictive license CC-BY-SA [15]

and it is concisely written for the application in practice. It

structures AI projects in four phases as a reference structure:

1) Goals and Requirements, 2) Structured Project Setup, 3)

Concepts and Implementation, and 4) Utilization of the Results.

These four phases come with 21 project steps which represent

the contents of a data science or AI project. The contents are

provided with short descriptions, key questions and concrete

tool recommendations. By this design, known shortcomings of

other models such as the CRISP-DM are addressed by the DSPG.

The model is meant as a reference model—in practice, there

will always be small changes such as a reordering of project

steps or skipping some.

PAISE® The Process Model for AI Systems Engineering,

known as PAISE®, tackles challenges of developing AI-based

systems by integrating strategies from systems engineering,

software development, and data science. It consists of seven

phases with the fifth phase, the development cycle, as its core.

The fundamental methodology involves incrementally devel-

oping the entire system, consisting of hardware, software and

AI components. Additionally, the role of datasets, being vital

for the development of AI components, is explicitly addressed.

Datasets are treated as own components with individual require-

ments and own development processes. The decomposition

of the overall system facilitates the parallelization of domain-

specific development processes. Concurrently, interdisciplinary

checkpoints are employed to test component dependencies,

leading to the refinement of component specifications and

solution approaches.

The selection of a suitable process model for data science and AI

projects may vary based on requirements and viewpoints which

are usually dependent on the use case, the enterprise and the

level of knowledge of the project members. Table 3 shows

some relevant aspects for the decision about a process model

to be used. A content-focused perspective can additionally be

helpful and can be found in form of a gap analysis in [16].
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Data acquisition considered 7 3 3

Explicit elicitation of

requirements

3 3 3

System development besides

model training

7 3 3

Planned interaction with other

engineering disciplines

3 3 3

Change management and

stakeholder considerations

7 3 7

Differences between

prototype and operational

development

3 3 3

Operation and maintenance

after deployment

3 3 3

Iterative (I) or linear (L) process

models

I I I / L

Table 3: Comparison of AI Development Process Models.

MLOps Platforms

AI systems and the pipelines involved usually get very com-

plex on a technical level. In navigating the complexities of

keeping machine learning systems continuously operational,

practical experience reveals the difficulty of organizing seam-

less collaboration between data scientists, DevOps teams, and

other stakeholders. Addressing this challenge is crucial to main-

taining a consistent development and operation pipeline for

machine learning models and their integration into machine

learning target systems.

Our recommendation is to use established MLOps

platforms as the basis for AI development and de-

ployment in productive use.

MLOps platforms have emerged as a key tool for managing the

end-to-end lifecycle of machine learning models. These plat-

forms enable seamless interdisciplinary collaboration between

data scientists, developers, and operations teams, facilitating

the integration of machine learning into business processes.

MLOps platforms offer a range of key features and bene-

fits. They provide provide control, streamlined deployment

blueprints, automatically deployed real-time monitoring with

drift detection, elastic scalability, and centralized, traceable

management that integrates directly with brownfield services

like storage and CI/CD services.

When deciding on a MLOps platform, the following categoriza-

tion gives a starting point for the consideration of what type

of platform meets the requirements:

• All-in-one suites: comprehensive hyperscaler solutions,

MLOps – A Process Model?

The Machine Learning Operations (MLOps) discipline, of-

ten referred to as ”DevOps for ML,” offers a process

model and methodological framework for effectively man-

aging the lifecycle of machine learning solutions. There-

fore MLOps treats ML models with the same rigour as

software artifacts: models, data and code are all version-

controlled, tested and released through CI/CD pipelines.

Coined in 2015 to curb the technical debt that stalls

many prototypes, MLOps frames a maturity ladder (popu-

larised by Google) that moves organisations from ad-hoc

scripts and model development to fully automated, end-

to-end pipelines accompanied by matching organisational

change. By covering every stage in the lifecycle of AI

projects, from data preparation, model training, deploy-

ment, real-time monitoring and continuous improvement,

MLOps turns prototypes into scalable, reliable ML prod-

ucts with predictable operating cost.

as MLOps emerged from the IT domain, that accelerate

time-to-value but introduce ecosystem lock-in.

• Topic-specific tools: best-of-breed components offer-

ing deep capabilities in deployment, version control, or

orchestration, yet demanding custom integration.

• Open-source stacks: highly flexible, community-driven

toolkits adaptable to any requirement, but require detailed

tool knowledge for setup and ongoing maintenance.

• Custom solutions:: tailored platforms delivering pinpoint

functionality and meet unique organizational needs at

the cost of dedicated in-house development and slower

feature evolution.

Beyond this core and basic type of decision, further considera-

tions affect a platform decision. Select a platform that scales

with data and compute growth, is easy to use and extend, pro-

tects sensitive data and models, supports multiple languages

and frameworks, and comes with strong community backing,

reputable vendors, and transparent pricing.

Real-world case studies and success stories demonstrate the

effectiveness of MLOps platforms in improving the operational-

ization of AI solutions. These examples showcase how organi-

zations have overcome challenges and achieved improved effi-

ciency, reliability, and time-to-market by implementing MLOps

platforms. Currently, the market is nascent and lacks standard-

ized frameworks. Therefore, an established, comprehensive

platform serves as a pragmatic starting point. As expertise

grows and practical needs become clearer, a shift to more tai-

lored or custom solutions might prove more cost-effective than

investing entirely in an end-to-end platform. However, plan-

ning for a future shift warrants thoughtful platform selection

due to the considerable effort involved in transitioning without

interoperable data models and standards in place.
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AI Innovation Center

The AI Innovation Center “Learning Systems and Cognitive

Robotics” supports companies in exploiting the economic op-

portunities offered by artificial intelligence and machine learn-

ing. In application-oriented research projects and direct coop-

eration with industrial companies, the Fraunhofer Institutes for

Manufacturing Engineering and Automation IPA and for Indus-

trial Engineering IAO in Stuttgart are working towards bringing

technologies from cutting-edge AI research into widespread

use in the manufacturing industry and the service sector. The

Institute of Human Factors and Technology Management IAT at

the University of Stuttgart supports them. The center receives

financial funding from the Baden-Württemberg Ministry of

Economic Affairs, Labour, and Tourism.

Mission

The AI Innovation Center is the application-oriented branch of

Cyber Valley, Europe’s largest research collaboration in the field

of artificial intelligence. It is also part of S-TEC, the Stuttgart

Technology and Innovation Campus: www.s-tec.de

It bridges the gap between state-of-the-art AI research and

small and medium-sized enterprises, making AI technologies

usable for the economy in Baden-Württemberg and beyond.

As a leading innovation partner for small and medium-sized

enterprises, the center works on topics that are of central

importance for the use of AI and robotics across industries,

such as autonomy, efficiency, sustainability, human-machine

interaction, and trust.

The AI Innovation Center informs companies about technol-

ogy trends as well as their potential applications and provides

them with low-threshold, needs-based support in the develop-

ment and implementation of ambitious AI innovations so that

they can make even better use of the economic opportunities

offered by AI in the future.

Vision

The AI Innovation Center is a beacon for successful technology

transfer to small and medium-sized enterprises and enables

companies to use artificial intelligence and robotics economi-

cally and responsibly for business success and individual and

social benefit.

Study Series “Learning Systems and Cognitive Robotics”

The study series “Learning Systems and Cognitive Robotics”

provides insight into the potential and practical applications

of AI. Further information and the latest versions of the stud-

ies can be found at the website of the AI Innovation Center:

https://www.ki-fortschrittszentrum.de/studien.

CC-KING Competence Center

The Competence Center Karlsruhe for AI Systems Engineering

(CC-KING, https://www.ki-engineering.eu) is a collaborative ini-

tiative spearheaded by three premier research institutions: the

Fraunhofer Institute for Optronics, System Technologies and

Image Exploitation (IOSB), the FZI Research Center for Informa-

tion Technology, and the Karlsruhe Institute of Technology (KIT).

Funded by the Ministry of Economics, Labour and Tourism of

Baden-Württemberg, CC-KING bridges cutting-edge AI and ML

research with established engineering disciplines to streamline

the deployment of intelligent systems in real-world industrial

and mobility contexts.

Mission and Methodological Foundations

KI-Engineering emphasizes AI Systems Engineering, a system-

atic framework for developing and operating AI-based solutions

embedded within larger, complex systems. Unlike traditional

engineering—where component behavior is predictable and

well-defined—AI systems introduce runtime-dependent behav-

iors shaped by data and learning. CC-KING addresses this chal-

lenge by formulating methodologies that ensure predictability,

functional safety, explainability, and certification readiness of

AI and ML components from the design phase onward.

Applied Research, Tools, and Industry Transfer

At its core, CC-KING combines rigorous research with practical

transfer mechanisms. It develops tools and process models such

as the PAISE (Process Model for AI Systems Engineering) and

the PAISE Toolkit—which integrate linear, system-level planning

with agile, subsystem-oriented AI development. Real-world

testing occurs in authentic lab environments: the Karlsruhe

Research Factory for AI-integrated production and the Test

Area Autonomous Driving Baden-Württemberg. CC-KING also

actively supports SMEs via QuickChecks, TransferChecks, work-

shops, and an AI Systems Engineering learning lab, making

sophisticated AI-engineering practices accessible to more orga-

nizations.

22

www.s-tec.de
https://www.ki-fortschrittszentrum.de/studien
https://www.ki-engineering.eu


AI Beyond the Prototype – Requirements One Pager 

1. Autonomy Level 

Requirement Requirement Priority Requirement Description 

Autonomy Level ☐ High  ☐ Mid   ☐ Low ☐ Assistance Functionality   ☐ Human in the Loop 

☐ Human Supervision   ☐ Full Autonomy 

2. Performance 

Requirement Requirement Priority Requirement Description 

Model Performance ☐ High   ☐ Mid   ☐ Low  

Model Robustness 
(Noise, Outliers, Drift) 

☐ High   ☐ Mid   ☐ Low  

  

Processing Time ☐ High   ☐ Mid   ☐ Low ☐ Milliseconds   ☐ Seconds   ☐ Minutes   ☐ Hours   ☐ Days 

3. Supervision and Maintenance 

Requirement Requirement Priority Requirement Description 

Drift Detection ☐ High   ☐ Mid   ☐ Low  

Retraining ☐ High   ☐ Mid   ☐ Low  

Model and Data 
Versioning 

☐ High   ☐ Mid   ☐ Low  

4. Integration and Deployment 

Requirement Requirement Priority Requirement Description 

Low Latency ☐ High   ☐ Mid   ☐ Low  

Integration with OT / 
automation equipment 

☐ High   ☐ Mid   ☐ Low  

Compliance with 
company-wide cloud / 
deployment strategy 

☐ High   ☐ Mid   ☐ Low  

Special hardware 
(Storage, GPU) 

☐ High   ☐ Mid   ☐ Low  
 

Aggregate data from 
multiple deployments 

☐ High   ☐ Mid   ☐ Low  

Remote access ☐ High   ☐ Mid   ☐ Low  

Data Protection, IT-
Security 

☐ High   ☐ Mid   ☐ Low  

5. Acceptability 

Requirement Requirement Priority Requirement Description 

Agency of the 
Operational 
Organization 

☐ High   ☐ Mid   ☐ Low  
 
 
 

Usability ☐ High   ☐ Mid   ☐ Low  

Documentation and 
Training 

☐ High   ☐ Mid   ☐ Low  

Explainability ☐ High   ☐ Mid   ☐ Low  

User Feedback ☐ High   ☐ Mid   ☐ Low  

Change Management ☐ High   ☐ Mid   ☐ Low  

Long-Term Availability 
of Technology 

☐ High   ☐ Mid   ☐ Low  

Long-Term Availability 
of Human Experts 

☐ High   ☐ Mid   ☐ Low  

6. Regulation Compliance 

Requirement Requirement Priority Requirement Description 

General AI System 
Regulation 

EU AI-Act Risk Classification:   ☐ High Risk   ☐ Limited Risk   ☐ Minimal Risk 

Functional Safety ☐ High   ☐ Mid   ☐ Low  
 

Traceability ☐ High   ☐ Mid   ☐ Low  
 

Absence of Bias ☐ High   ☐ Mid   ☐ Low   
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